Electrostatic deposition of graphene in a gaseous environment: a deterministic route for synthesizing rolled graphenes?

نویسندگان

  • Anton Sidorov
  • David Mudd
  • Gamini Sumanasekera
  • P J Ouseph
  • C S Jayanthi
  • Shi-Yu Wu
چکیده

The synthesis of single-wall carbon nanotubes of desired diameters and chiralities is critical to the design of nanoscale electronic devices with desired properties. The existing methods are based on self-assembly, therefore lacking control over the diameters and chiralities. The present work reports a direct route for rolling graphene. Specifically, we found that the electrostatic deposition of graphene yielded: (i) flat graphene layers under high vacuum (10(-7) Torr), (ii) completely scrolled graphene under hydrogen atmosphere, (iii) partially scrolled graphene under nitrogen atmosphere, and (iv) no scrolling for helium atmospheres. Our study shows that the application of the electrostatic field facilitates the rolling of graphene sheets exposed to appropriate gases and allows the rolling of any size of graphene. The technique proposed here, in conjunction with a technique that produces graphene nanoribbons of uniform widths, will have significant impact on the development of carbon nanotube based devices. Furthermore, the present technique may be applied to obtain tubes/scrolls of other layered materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Size-selective nanoparticle growth on few-layer graphene films.

We observe that gold atoms deposited by physical vapor deposition onto few-layer graphenes condense upon annealing to form nanoparticles with an average diameter that is determined by the graphene film thickness. The data are well described by a theoretical model in which the electrostatic interactions arising from charge transfer between the graphene and the gold particle limit the size of the...

متن کامل

A study of the synthetic methods and properties of graphenes.

Graphenes with varying number of layers can be synthesized by using different strategies. Thus, single-layer graphene is prepared by micromechanical cleavage, reduction of single-layer graphene oxide, chemical vapor deposition and other methods. Few-layer graphenes are synthesized by conversion of nanodiamond, arc discharge of graphite and other methods. In this article, we briefly overview the...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2009